43 research outputs found

    Baseline Assessment of the Coral Reef Habitat in Kaloko-Honokƍhau National Historical Park Adjacent to the Proposed Honokohau Harbor Expansion and Development, Kona Kai Ola, 2006-2007

    Get PDF
    Reports were scanned in black and white at a resolution of 600 dots per inch and were converted to text using Adobe Paper Capture Plug-in.Coral reefs are ecologically and economically important ecosystems, but highly susceptible to impacts of coastal development and, therefore, indicative of environmental degradation. A detrimental impact of coastal development is the stimulation of a benthic community shift to algal dominance from coral dominance. To identify reef degradation before it has advanced too far to be readily reversed, it is important that a sound monitoring program is initiated and maintained, and that procedures are in place to rapidly take mitigation measures if coral-reef condition metrics indicate negative change. In 2006, at the southern boundary of Kaloko-Honokƍhau National Historical Park, 530 acres of public land were proposed to be developed into a mixed-use development that includes an almost 300% expansion of the existing Honokohau Small Boat Harbor. This proposed large-scale development has the potential to affect cultural and natural resources in Kaloko-Honokƍhau NHP. A baseline study of the reefs in the vicinity of Honokohau Harbor was undertaken in order to generate a reliable and comprehensive assessment of the current (pre-harbor expansion) condition of the benthic communities within the Park. The study is comprised of three coral reef areas close to the Honokohau Small Boat Harbor and two reference sites presumed to be unaffected by onshore development. An overview of the current state of the benthic habitat for each site is presented, focusing on coral cover, algal cover, species composition, coral health, and macro-invertebrate abundance. Average coral cover across all sites was 47.4% +/- 6.4 SD and macroalgae were virtually absent (<0.5%). Coral cover at the five sites ranged between 31% and 58%, which is well within the range typically found on the west coast of Hawai'i. Dominant macroinvertebrates were large urchins, which are important herbivores. Additionally, individual coral colonies were identified to monitor coral mortality. A similar study is being conducted at the northern boundary of the Park where a residential development and a golf course are under construction. The results of both studies will be comparable, and provide baseline useful in monitoring for potential impacts of these nearshore developments.This study was funded by the National Park Service under Task Agreement # J8320060008 through the Hawaii-Pacific Islands Cooperative Ecosystem Studies Unit, Cooperative Agreement #H8080040012. We thank I. Williams, E. Brown, and W. J. Miller for their assistance with sampling design and statistics. We are grateful to I. Williams, DAR; E. Grossman, USGS; K. Knee and M. Parsons for letting us use their data. We thank R. Gmirkin and K. Wong for assistance in the field work and D. Duffy for his support. We thank two peer-reviewers for their review and comments. This work was performed under Hawaii Division of Aquatic Resources Special Activity Permit number PRO-2006-84 and PRO-2007-16. Mention of trade names or commercial products in this report does not constitute endorsement or recommendation by the National Park Service or the University of Hawaii

    Baseline Assessment of the Coral Reef Habitat in Kaloko-Honokƍhau National Historical Park Adjacent to the Shores at Kohanaiki Development, 2006-2007 ï»ż

    Get PDF
    Reports were scanned in black and white at a resolution of 600 dots per inch and were converted to text using Adobe Paper Capture Plug-in.This study provides current-condition baseline data and long-term monitoring methodology for coral reef habitats within the northern portion of Kaloko-Honokƍhau National Historical Park for 2006-2007. The Park contains approximately 596 acres of coral reefs, state-designated pristine coastal waters, and unique coastal aquatic ecosystems such as Hawaiian fishponds and anchialine pools. The Park is located on the rapidly urbanizing Kona Coast on the west side of Hawai'i Island and will be surrounded by large-scale developments that include a golf course; commercial, light industrial, and residential developments; and a possible harbor expansion resort complex. Coastal development in the Kailua-Kona area will also impact the Park's reefs through increases in fishing, anchoring, and recreational use. Worldwide, coastal development has had profound impacts on coral benthic communities, and is implicated in shifts from coral dominance to algal dominance with resulting loss of habitat for reef organisms. In response to the construction of the "Shores at Kohanaiki" development adjacent to the Park's north boundary, this study was initiated to establish a current baseline and to identify changes in percent coral cover, algal cover, and coral survival over time at two habitat zones within Kohanaiki Reef compared to two reference sites. In Spring 2006, Fall 2006, and Summer 2007, pre-development baseline data were collected on (1) randomly selected photo transects, (2) individual corals, and (3) macroinvertebrate densities to monitor coral reef health. Benthic cover at all three sites was primarily composed of coral, turf algae, and crustose coralline algae. Mean coral cover at Kohanaiki Reef as a whole remained stable throughout the 17-month study period, varying from 30.7 to 34.3%. Macroalgae were a minor component, comprising less than 1% cover at all sites on all survey dates except at Kohanaiki Reef vertical-wall sites where macroalgae were approximately 4.5% of benthic cover. Grazing urchin populations were present at all sites, averaging 6.0 urchins/m2 +/- SD 2.8. Acanthaster planci were present, but uncommon. Porites Tissue-Loss Disease was encountered on several Porites lutea colonies at the Kaloko Reference Site in the summer of 2006, and Porites Trematodiasis was observed throughout the study at all sites. Partial bleaching was widespread on Pocillopora meandrina heads at Kohanaiki Reef in October of 2005, but corals had recovered or died by the time of our surveys. Results indicate that the study design and survey methods are robust and have a good probability of correctly identifying >10% absolute change in coral cover over time.This study was funded by the National Park Service under Task Agreement # J8320050012 through the Hawai‘i-Pacific Islands Cooperative Ecosystem Studies Unit, Cooperative Agreement #H8080040012. We thank E. Brown, W. J. Miller, R. Steidl, and I. Williams for their assistance with sampling design and statistics. We thank R. Gmirkin for assistance in the field work and J. Beets for his support. We thank two peer-reviewers for their review and comments. This work was performed under Hawai‘i Division of Aquatic Resources Special Activity Permit number PRO-2006-84 and PRO -2007-16

    Managing Local Stressors for Coral Reef Condition and Ecosystem Services Delivery Under Climate Scenarios

    Get PDF
    Coral reefs provide numerous ecosystem goods and services, but are threatened by multiple environmental and anthropogenic stressors. To identify management scenarios that will reverse or mitigate ecosystem degradation, managers can benefit from tools that can quantify projected changes in ecosystem services due to alternative management options. We used a spatially-explicit biophysical ecosystem model to evaluate socio-ecological trade-offs of land-based vs. marine-based management scenarios, and local-scale vs. global-scale stressors and their cumulative impacts. To increase the relevance of understanding ecological change for the public and decision-makers, we used four ecological production functions to translate the model outputs into the ecosystem services: “State of the Reef,” “Trophic Integrity,” “Fisheries Production,” and “Fisheries Landings.” For a case study of Maui Nui, Hawai‘i, land-based management attenuated coral cover decline whereas fisheries management promoted higher total fish biomass. Placement of no-take marine protected areas (MPAs) across 30% of coral reef areas led to a reversal of the historical decline in predatory fish biomass, although this outcome depended on the spatial arrangement of MPAs. Coral cover declined less severely under strict sediment mitigation scenarios. However, the benefits of these local management scenarios were largely lost when accounting for climate-related impacts. Climate-related stressors indirectly increased herbivore biomass due to the shift from corals to algae and, hence, greater food availability. The two ecosystem services related to fish biomass increased under climate-related stressors but “Trophic Integrity” of the reef declined, indicating a less resilient reef. “State of the Reef” improved most and “Trophic Integrity” declined least under an optimistic global warming scenario and strict local management. This work provides insight into the relative influence of land-based vs. marine-based management and local vs. global stressors as drivers of changes in ecosystem dynamics while quantifying the tradeoffs between conservation- and extraction-oriented ecosystem services

    How models can support ecosystem-based management of coral reefs

    Get PDF
    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they require many efforts to decipher the numerous interactions and feedback loops. Given the breadth of questions to be tackled when dealing with coral reefs, the best practice approach uses multiple model types and thus benefits from the strength of different models types

    Management Strategy Evaluation: Allowing the Light on the Hill to Illuminate More Than One Species

    Get PDF
    Management strategy evaluation (MSE) is a simulation approach that serves as a “light on the hill” (Smith, 1994) to test options for marine management, monitoring, and assessment against simulated ecosystem and fishery dynamics, including uncertainty in ecological and fishery processes and observations. MSE has become a key method to evaluate trade-offs between management objectives and to communicate with decision makers. Here we describe how and why MSE is continuing to grow from a single species approach to one relevant to multi-species and ecosystem-based management. In particular, different ecosystem modeling approaches can fit within the MSE process to meet particular natural resource management needs. We present four case studies that illustrate how MSE is expanding to include ecosystem considerations and ecosystem models as ‘operating models’ (i.e., virtual test worlds), to simulate monitoring, assessment, and harvest control rules, and to evaluate tradeoffs via performance metrics. We highlight United States case studies related to fisheries regulations and climate, which support NOAA’s policy goals related to the Ecosystem Based Fishery Roadmap and Climate Science Strategy but vary in the complexity of population, ecosystem, and assessment representation. We emphasize methods, tool development, and lessons learned that are relevant beyond the United States, and the additional benefits relative to single-species MSE approaches

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: A community perspective

    Get PDF
    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    Get PDF

    An integrated ecosystem model for coral reef management where oceanography, ecology and socio-economics meet

    No full text
    Widespread coral reef decline, including decline in reef fish populations upon which many coastal human populations depend, have led to phase-shifts from the coral-dominated systems, found desirable by humans, to algal-dominated systems that provide less ecosystem services, and the loss of functionally important species. Marine resource managers are challenged with providing strategies that can mitigate or prevent such phase shifts and losses and promote the sustainable use of marine resources. Additionally, managers need to take into account the impacts of these strategies on the socioeconomic conditions of the many resource users. To respond to these challenges scientists, managers and policy makers have advocated for an ecosystem-based approach instead of the traditional focus on individual (economically important) species. Ecosystem-based management includes the various dynamic processes that influence an ecosystem, such as hydrology, ecology, biogeochemistry, and human activities. The management strategy evaluation (MSE) tool commonly used in single species stock assessments for evaluating socioeconomic and ecological tradeoffs of alternative management strategies, has now become more widely applied in multi-species or ecosystem assessments. Ecosystem modelling can include more of the key dynamic processes that drive ecosystems and by using that in an MSE framework provides a better understanding of the socio-ecological consequences of management options and quantifies these tradeoffs. In this thesis, I review the use of minimal, intermediate and complex coral reef ecosystem models for their suitability of MSE applications. I conclude that complex models can integrate the myriad dynamic processes that govern coral reef ecosystems and are most suitable for MSE, but that minimal and intermediate models are needed to provide the relationships relevant to these dynamics. The main objective of this thesis was to develop a complex model and quantify the effects of watershed management and fishery regulations on coral reef ecosystem services against a backdrop of climate change impacts. For this model development, I selected the Atlantis ecosystem model framework and applied it to a case study of the coral reef ecosystems around Guam to evaluate the performance of alternative management strategies against identified ecosystem metrics. Following the step-wise approach recommended for Integrated Ecosystem Assessments, I started with a workshop involving local stakeholders (including resource managers and other coral reef users) to identify the (1) overarching goal of coral reef management, (2) ecological indicators of reef status, and (3) socioeconomic indicators of reef users. Using an Ecopath model I identified additional ecosystem indicators of fishing impacts that could also be used as performance metrics in the ecosystem modelling of alternative strategies. Published relationships for key coral reef dynamics were used to apply the Atlantis framework to coral reef ecosystems. I then developed and parameterized the Guam Atlantis model including 42 functional species groups and the system impacts of eutrophication, sedimentation, fishing and ocean warming and acidification. I validated the model simulations of no local or global stressors, a ‘control run’, following common guidelines for Atlantis development and I validated the added dynamics with published and empirical data or with expert judgement. Due to the absence of time series, model skill assessment was difficult but I could compare biomass of included fish groups after a 1985–2015 simulation with observational data in 2011. These results showed that the model is biased and overestimates various fish groups. However, because the origin of the bias is unknown, rectifying the bias at this point was not possible. Despite this, based on the model validations I concluded that the model was ‘scenario ready’ and suitable for use as a basis of relative comparisons of management strategies, allowing for evaluations to be conducted in an internally consistent context. I applied the model to evaluate the relative performance of management strategies against a set of criteria based on the overall goals identified by local resource managers. These included: (1) improved water quality, (2) increased reef resilience, (3) enhanced fish biomass, and (4) similar or improved fishery landings. Comparing tradeoffs across the selected scenarios showed that each scenario performed ‘best’ for at least one of the performance indicators. The integrated ‘full regulation’ scenario (size and bag limits, marine preserves and no land-based sources of pollution) outperformed other scenarios with two thirds of the performance metrics approaching the criteria at the cost of reef-fish landings. When the effects of climate change were taken into account, the selected scenarios performed fairly equally, but none could prevent a collapse in coral biomass by mid-century under a business-as-usual greenhouse gas emission scenario. To get a better understanding of how these same management scenarios influence the economically important tourism sector and the socially important reef-fishing sector, I coupled the Guam Atlantis model to two human behavior models, one representing divers and the other fishers. Ecosystem modelling also allows for the comparison of cumulative impacts. Assessments of individual and cumulative impacts of three stressors to reef ecosystems: land-based sources of pollution, fishing and climate change, showed that, to-date, fishing has had the most negative influence on ecosystem metrics that represent reef status, resilience and functioning, and climate change will have the most negative effect in the future most noticeably on the benthic community structure. Cumulative simulations generally showed that the actual effect was slightly less than could be expected based on the sum of their individual effects, keeping in mind that the actual effect size was negative. With this model now developed, it provides a tool for assessing and quantifying a range of questions in support for EBM for coral reef ecosystems

    Karakteristik Kurva Efisien Frontier dalam Menentukan Portofolio Optimal

    No full text
    Pada tulisan ini karakteristik kurva efisien frontier pada model portofolio Markowitz diteliti secara matematis. Portofolio optimal diperoleh dengan menggunakan metode Lagrange. Pada penelitian ini juga dikaji karakteristik portofolio optimal pada portofolio minimum variance, portofolio tangency dan portofolio mean-variance serta posisinya pada kurva efisien frontier. Lebih lanjut untuk memberikan gambaran yang lebih konkrit maka diberikan contoh numerik pada beberapa saham yang diperdagangkan di pasar modal Indonesia
    corecore